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Abstract

One of the main problems in predicting the response of flexible structures subjected to vortex shedding is that a

totally reliable model for the fluid loading does not exist. It is also very difficult to measure the distributed force exerted

by the fluid along the length of a marine riser without disturbing the system in some way. The methodology described

here uses experimental response data obtained in a test programme undertaken in the Delta Flume in Holland during

May 2003, linked to a finite element method model (FEM) of the riser. The length-to-diameter ratio of the model used

was around 470, the mass ratio (mass/displaced mass) was 3 and the Reynolds number varied between 2800 and 28 000.

By using the response data as the input to the numerical model, the instantaneous distributed in-line and transverse

forces acting on a flexible cylinder can be studied.
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1. Introduction

The prediction of the response of risers due to vortex-induced vibration is hindered by a lack of information on the

fluid forces acting on a circular cylinder free to respond in many modes. Important progress has been made by

measuring forces on a rigid section of a cylinder, either mounted on springs or forced to oscillate. Also forces have been

calculated using CFD codes where in most cases the cylinder has been divided into a large number of segments and

along each the flow is assumed to be two-dimensional. Evangelinos et al. (2000) have used a three-dimensional DNS

code to determine fluid forces acting on a cylinder responding in its second mode: in one case as a standing wave and in

the other as a travelling wave. They are not alone in commenting on the lack of any benchmark experiments that can be

used to help validate their computational results. Measuring distributions of fluid forces acting on a flexible cylinder in

a current, both in-line and transverse to the flow direction, is a challenging experimental problem. There are difficulties

associated with having a large number of force transducers, achieving constant structural parameters of mass, damping

and stiffness and preventing interference to the flow. In this paper, an indirect method of determining fluid forces is
e front matter r 2006 Elsevier Ltd. All rights reserved.
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described that uses displacements measured at a large number of points as input to a finite element model (FEM) of a

flexible cylinder.

The input response data used comes from experiments by Chaplin et al. (2005), carried out on a model of a vertical

tension riser exposed to a stepped current. The experiments were carried out at Delft Hydraulics in the Delta Flume,

which was used as a towing tank. The flume is 230m long, 5m wide, and in these tests the water depth was 6:5m. It is

equipped with a heavy carriage whose maximum speed in either direction is 1:0m=s. The model riser was 13:12m long

and had a diameter of 28mm, giving a maximum Reynolds number of 28 000. The mass ratio, calculated as the mass of

the model divided by the mass of fluid displaced, was 3 and the structural damping measured in free decay tests in air

was around 0.3%. The effect of a stepped current was achieved by mounting the model on the towing carriage with the

upper 55% of the model inside a chamber sealed at the top and with its other end open just below the water surface of

the flume. By evacuating the air from the chamber, the upper 55% remained in still water while the lower 45% was

exposed to a current. It was also possible to carry out tests with air completely filling the chamber. The response was

determined from the outputs of strain gauges measuring bending in the in-line and transverse directions; 32 pairs of

strain gauges were installed at a separation of 410mm along the model length. The strain gauges nearest the extremities

were placed at 205mm from the ends. A tensioning device was placed at the top of the model, so the tension could be

adjusted to avoid excessive axial stress. This consisted of an array of springs linking the fixed top end support with the

top of the riser. Load cells were used to measure tensions and in-line forces at the top and bottom ends of the riser

model.

The results from these experiments, including measured responses, are described by Chaplin et al. (2005). In the

present paper these response measurements are used to obtain fluid forces, but the method devised can be equally well

applied to other response data sets, so long as they have sufficient spatial resolution along the riser axis.
2. The numerical method

The marine riser model can be idealized as a beam with low flexural stiffness. The deflection of a generic beam is

described by means of the Euler–Bernoulli beam equation. A Cartesian reference with its origin at the bottom of the

riser has been used, in which the x axis is parallel to the flow velocity, z coincides with the vertical axis of the riser in its

undeflected configuration and the y is perpendicular to both. The equation of motion of the riser is then

EI
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where ux;yðz; tÞ is the deflection, m is the mass of the beam per unit length, c is the damping characteristic, EI is the

flexural stiffness and TðzÞ is the applied tension. The external fluid force is FTx;y and all the fluid forces are included in

the right-hand side of the equation. This equation neglects the effects of rotational inertia. The tension can be expressed

as

TðzÞ ¼ Tt � wðL� zÞ, (2)

Tt being the tension applied at the top of the riser, L the length of the riser and w the submerged weight. The model was

pin-ended, hence displacements and curvatures were zero at each end, with the following boundary conditions:

uð0; tÞ ¼ 0; uðL; tÞ ¼ 0 8t,

q2uð0; tÞ

qz2
¼ 0;

q2uðL; tÞ

qz2
¼ 0 8t. ð3Þ

Using the finite element method, we transform Eq. (1) into a system of algebraic equations that gives the approximate

solution of the equation in each finite element; see Masdemont-Soler (2002) or Bathe (1996). Extending this

approximation to all the elements, and expressing it in matrix form, we obtain

KUþ C _UþM €U ¼ F, (4)

where K is the stiffness matrix, C the damping matrix, M the mass matrix and U the displacement vector. The overdot

indicates differentiation with respect to time. Proportional or Rayleigh damping has been used, and this equates C as a

linear combination of M and K; i.e.,

C ¼ aMþ bK ða ¼ 0:0555; b ¼ 0:0002Þ. (5)
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Coefficients a and b can be calculated using modal structural damping ratios and the natural frequency of the

corresponding modes. Structural damping ratios were obtained from decay tests in air, assuming that the air damping

was neglectable.

This linear model deals with cross-flow and in-line motions independently, and it does not consider axial components

and the array of springs of the tensioning device at the top end of the cylinder. Two degrees of freedom are considered

at each node of each element, one for the displacements ux;yðz; tÞ and the other for the slopes qux;yðz; tÞ=qz (first spatial

derivative of the displacements). With this method one can calculate the force distribution along the axis of the riser at

each instant for which the displacements are available. This is done by putting the values of U, _U and €U into Eq. (4).

Because deformations are relatively small compared to the length of the riser, a FEM linear model has been used for the

in-line and cross-flow directions separately. Mass and stiffness matrices are constant in time and based on the initial

static configuration with the vertical riser undeformed. Boundary conditions (3) are implicit in the measured values U,

and hence in _U and €U.

3. Force calculations

In some test cases the riser was submerged in water only up to 45% of its length. The rest was exposed to air and

therefore the fluid forces on this part are expected to be very small compared to those on the lower half. Two

representative test cases are presented here. One with the upper part exposed to water and the other with air.

The first case shown (May16_C021), in Figs. 1 and 2, is one of the experiments in which the riser was surrounded by

water over its entire span. The flow speed was 0.85m/s and the mean top tension during the steady part of the run was

1107N. The Reynolds number was 23 800 and the reduced velocity, based on the fundamental natural frequency in still

water of the riser at this tension, was 37.21. The reduced velocity based on the frequency of the dominant cross-flow

mode was 5.72. The dominant cross-flow mode was the 7th running at a frequency of 5:33Hz, and the dominant in-line

mode was the 12th at 10:68Hz.

Fig. 1 shows the in-line responses and force distributions as well as the r.m.s. (root mean square) of the in-line and the

cross-flow response. In the upper left corner, the instantaneous in-line deflections with (Fig. 1(a)) and without

(Fig. 1(b)) the mean deflected shape are shown for every half a second. The r.m.s. of the in-line motion is shown in the

third plot (Fig. 1(c)). The distribution of local drag coefficient ðCd Þ, appears in the fourth plot (Fig. 1(d)) also for every

half second. The dashed lines mark the envelope of the drag distribution during the steady part of the run. The r.m.s. of

the cross-flow motion is presented in Fig. 1(e) beside the Cd plot. The colour map (online) in the lower part of Fig. 1(g)

shows the Cd distribution along the axis of the riser between the 30th and 40th second of the run. In the upper right

corner (Fig. 1(f)) the Cd distribution appears expanded for the 36th second of the run.

Fig. 2 shows mainly the cross-flow forces for this first case. The upper left corner (Fig. 2(a)) shows the instantaneous

cross-flow deflections. The r.m.s. of cross-flow (Fig. 2(b)) and in-line (Fig. 2(d)) motions are shown again, and finally

the lift coefficient (Cl) distribution along the axis of the riser (Fig. 2(c)). Solid lines represent different instants half a

second apart and the dashed lines the envelope of the Cl . The colour maps show the evolution in time of the Cl

magnitudes for the same periods of time as in the previous figure. The vertical axes in Figs. 1–4 give the elevation from

the bottom end of the riser to the top end at 13:12m. The file Movie1.mpg included as an electronic annex, contains an

animation showing in-line deflection, drag coefficient distribution, cross-flow deflection and lift coefficient distribution

for this first case analyzed.

Results for the second example (May22_D006), with the upper part of the riser in air, can be seen in Figs. 3 and 4.

The arrangement of the plots in these figures is the same as that explained for Figs. 1 and 2. In this case the flow speed

was 0.85m/s and the mean top tension was 2151N, resulting in a reduced velocity based on the fundamental natural

frequency of 24.20. The reduced velocity based on the frequency of the dominant cross-flow mode was 6.42. The

Reynolds number was 23 800. The dominant cross-flow mode in this case was the 4th running at a frequency of 4:75Hz,

and in the in-line direction the 7th at 9:45Hz. A second video, Movie2.mpg, showing this case is included as an

electronic annex.

The inertial component of the force in Eq. (4), M €U, has zero mean all along the axis of the riser and is in antiphase

with respect to the stiffness part ðKUÞ, which has zero mean only where the current profile is zero. The damping force

ðC _UÞ has been found to be very small compared to the other two components in (4). The contribution of the damping

force to the total is less than 2%, hence damping forces can be neglected without significant loss of accuracy.

The figures show how in the lower half, the highest values of Cd are found at the positions where the cross-flow r.m.s.

response is large. The Cd reaches peak values of around 4.5. In the upper part, the force is small even though the cross-

flow r.m.s. response peaks have the same order of magnitude as in the lower part. It has been observed how in the case

where the cross-flow deflection is large, the Cd distribution is not as uniform as it is when the cross-flow motions are

small. At the nodes, Cds tending to the stationary cylinder values at the Reynolds number of the experiments, are
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Fig. 2. Lift coefficient distribution—May16_C021.

Fig. 1. Drag coefficient distribution—May16_C021.
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Fig. 3. Drag coefficient distribution—May22_D006.
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observed. The lift distribution tends to follow the shape of the r.m.s. of the cross-flow motion. Local Cl peaks have been

found with values up to 5, and these occur where the largest cross-flow deflections occur. The animations (Movie1.avi

and Movie2.avi) made using this data suggest that in the lower part, where there is a uniform current, and the vortex

shedding is exciting the riser model, the lift coefficient is close to being in phase with the motion. The lift at the nodes is

practically zero, indicating that at these points, where the direction of the motion changes sign, vortex shedding is not

occurring.

Measurements of force distributions for multi-modal vortex-induced vibrations are not available in the literature.

However, similar high values of force coefficients, but for low Reynolds number and low mode number responses, have

been observed by Evangelinos et al. (2000) in DNS computations. Although they only consider responses up to the

second mode, many of the features of their results are similar to the ones presented here.

Mean drag coefficients based on the riser length exposed to the current, for all the test cases, have been computed

using the methodology described here. They are shown in Fig. 5 as open circles. The total drag forces that have

produced these drag coefficients have been calculated as the spatial integration of the in-line force distribution over a

period of 30 s for most of the cases. The filled circles in Fig. 5 are the experimental drag coefficients obtained from the

load cell signals at the ends of the model. They have been calculated by resolving the measured tension in the in-line

direction. Solid lines mark the different lock-in regions, and over them the dominant cross-flow/in-line mode is

indicated. Lines along the reduced velocity axis, indicate the various lock-in regions. In this figure, the drag coefficients

for those experimental runs where the upper half of the riser was in air rather than in water, are also plotted. It can be

seen how the Cds obtained through the methodology presented here are very close to the values found using the direct

measurement method.

The noise in the measured signals, the fact that the array of springs at the top of the model has not been modelled and

the use of the initial configuration geometry to calculate the stiffness, mass and damping matrices, which are not

updated each time step, are believed to be the main sources of error. An error estimation in the force distribution

calculations, can be done by looking to the cases with the upper half length in air, in which the expected hydrodynamic

forces should be practically zero. The force coefficient maximum values found in the upper part for these cases are
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Fig. 5. Measured and calculated Cd coefficients.

Fig. 4. Lift coefficient distribution—May22_D006.
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approximately 15% of the maximums resulting in the lower part. In the top end, where the array of springs is located,

the error has been found to be higher than 15%.
4. Conclusions

The time-dependent fluid force distribution on a vertical tension riser model undergoing vortex-induced vibrations in

a stepped current, has been obtained from measured displacements by an indirect finite element technique.

The drag distributions tend to follow the shape of r.m.s. cross-flow deflection, revealing quantitatively the increase in

drag that occurs where cross-flow deflections are the largest. In cases with large cross-flow response the drag

distributions along the riser have been found to be quite variable, contrary to what happens with low cross-flow

responses. Local instantaneous Cd values up to 4.5 have been found. At the nodes, where practically no response is

found, values of Cd approaching those of stationary cylinders at the Reynolds number of the experiment have been

observed.

Computed distributions of the Cl also tend to follow the form of r.m.s. cross-flow deflections, with very small values

at the nodes, and maximum values of Cl up to 5 at anti-nodes. Animations generated with these data suggest that the

lift force is almost in phase with the deflection of the model in the regions where the riser is exposed to a current.

This methodology and the resulting data, of which this paper shows only two examples, may contribute to an

improved understanding of vortex-induced vibrations. They also provide new opportunities for validating flow-induced

forces computed by CFD coupled with structural codes.
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